博客
关于我
【Lintcode】650. Find Leaves of Binary Tree
阅读量:182 次
发布时间:2019-02-28

本文共 1448 字,大约阅读时间需要 4 分钟。

题目地址:

给定一个二叉树,要求返回其叶子节点,然后将叶子节点删去,继续返回叶子节点,继续删去叶子,直到树空。返回每次得到的叶子节点。

更快的 O ( n ) O(n) O(n)的方法参考。下面介绍一个逐次删掉叶子的方法:

思路是DFS,开一个函数对二叉树做DFS,每次DFS的时候,将叶子收集在一个列表里,同时删除掉叶子节点;删除的方式是,将这个函数的返回值设为删掉所有叶子后的二叉树的树根,这样就可以在到达叶子的时候返回null回去连到上一层的树根上,就达到了删掉叶子的效果。代码如下:

import java.util.ArrayList;import java.util.List;public class Solution {       /*     * @param root: the root of binary tree     * @return: collect and remove all leaves     */    public List
> findLeaves(TreeNode root) { // write your code here List
> res = new ArrayList<>(); while (root != null) { List
cur = new ArrayList<>(); root = dfs(root, cur); res.add(cur); } return res; } private TreeNode dfs(TreeNode root, List
cur) { if (root == null) { return null; } else if (root.left == null && root.right == null) { cur.add(root.val); return null; } else { root.left = dfs(root.left, cur); root.right = dfs(root.right, cur); return root; } }}class TreeNode { int val; TreeNode left, right; TreeNode(int x) { val = x; }}

时间复杂度 O ( n 2 ) O(n^2) O(n2)(最差情况是每次删除的叶子节点个数是 1 1 1,比如整个二叉树是个链表,那么此时时间复杂度最高。可以考虑 T ( n ) = ∑ i = 1 h O ( n − l i ) T(n)=\sum_{i=1}^{h}O(n-l_i) T(n)=i=1hO(nli),其中 l i l_i li是每次删除的叶子, h h h是树的高度,容易知道最差情况是二叉树是链表的时候。而若二叉树较为平衡时,时间复杂度可以降到 O ( n log ⁡ n ) O(n\log n) O(nlogn)),空间 O ( h ) O(h) O(h)(除去最后返回的列表的空间)。

转载地址:http://idds.baihongyu.com/

你可能感兴趣的文章
Nacos2.X 源码分析:为订阅方推送、服务健康检查、集群数据同步、grpc客户端服务端初始化
查看>>
Nacos2.X 配置中心源码分析:客户端如何拉取配置、服务端配置发布客户端监听机制
查看>>
Nacos2.X源码分析:服务注册、服务发现流程
查看>>
NacosClient客户端搭建,微服务注册进nacos
查看>>
Nacos中使用ribbon
查看>>
Nacos使用OpenFeign
查看>>
Nacos使用Ribbon
查看>>
Nacos做注册中心使用
查看>>
Nacos做配置中心使用
查看>>
Nacos入门过程的坑--获取不到配置的值
查看>>
Nacos原理
查看>>
Nacos发布0.5.0版本,轻松玩转动态 DNS 服务
查看>>
Nacos启动异常
查看>>
Nacos命名空间配置_每个人用各自自己的命名空间---SpringCloud Alibaba_若依微服务框架改造---工作笔记001
查看>>
Nacos和Zookeeper对比
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos基础版 从入门到精通
查看>>
Nacos如何实现Raft算法与Raft协议原理详解
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(上)
查看>>